

Challenges Of Large-Scale Distributed Real-Time Embedded Systems

David Sharp
Technical Fellow
Phantom Works, Open System Architecture
david.sharp@boeing.com
1 December 2001

Problem Challenges

- Operational Complexity of Large-scale
 Embedded Systems Is Growing Exponentially
 - New capabilities: networked autonomous UAVs...
 - Extended capabilities: online control adaptation... 777
- ...And Represents A Pacing Item In System Cost and Schedule

software size 747-400 757/767

AM2325.23

Current Leading Practices- Boeing Bold Stroke Initiative

Bold Stroke

Object-Oriented Reusable Application Framework

Architecture Specific Service Software

- Configurable to variable hardware configurations
- Supportive of reusable applications

• COTS-based real-time middleware services

Standard Service Software

Infrastructure Services

Operating System

Board Support Package

Hardware (CPU, Memory, I/O)

Single Component Development Policies

• Configurable for Product Specific Functionality and Execution Environment

Configurable for Product Specific Component Selection and Distribution Environment

Component Integration Policies

Operator

Real World Model

Avionics Interfaces

Infrastructure Services

Helping To Bridge the Gap Between Research, COTS, and DoD Practice

Commercial and Standards-Based Platform

Component Integration Model

SDP Workshop, Dec 2001

Technology Challenges

 Multiple Dimensions Must Be Addressed, Balanced, and Integrated

Forces

- AffordabilityQuality
- •Timeliness..
- Hard/Soft Real-TimePeriodic/AperiodicSafetyReliability...

Process Technologies

tools, methods, environments, CMM, etc, to build systems

software to be reused in system: OS, BSP, ORBs

OO, reuse, architectures, real-time theory, languages, product lines, standards to address cost, timeliness, and quality

Product Components

Product Technologies

Resource Management

- Supporting resource management of multiple cross-cutting properties
 - Timeliness, quality, security, power, reliability, etc
- ...across increasing scope of resources (increasing numbers/types)
 - CPUs, memory subsystems, networks, vehicles, etc
- ...adaptively using reflective ("own system") information

reliability
security
power
bandwidth
quality
timeliness

scope

operation is predictable

Verifiability and Certifiability

component development configuration system initialization de transitions adaptation component component integration discrete mode transitions adaptation time at which

current research leverages

current practice assumes

">\$1B to certify"

design time

Need To Extend Both Verification Timeline and Locality To Leverage Emerging Technologies

run time

SDP Workshop, Dec 2001

Combine Multiple Cross-Cutting Technologies for Unprecedented Developmental and Operational Capabilities

- Heterogeneous Systems: Unique Challenge of Integrating Coupled Technologies
 - Diverse safety criticalities
 - Soft and hard real-time deadlines
 - Discrete and continuous time computations
 - Multiple security levels
 - New and legacy architectural frameworks
 - Within and between systems

...Simultaneously!

